THERMO WS 2: Potential Energy Diagrams & Thermochemical Equations

Figure 1

Figure 2

Use Figure 1 to answer questions 1-7.

- 1. How much stored P.E. do the reactants have? 20 KJ
- 2. How much stored P.E. do the products have? 65 45
- 3. How much activation energy, Ea, is needed for this reaction?

Eq = 80 KJ - 20 KJ = 160 KJ

4. Is there a net gain or loss of energy?

Net gain of E

- 5. How much P.E. must be added to the reactants to form the activated complex? 80 kS 20 kJ = 60 kJ
- 6. Calculate the value of ΔH_{rxn} ?

AH = Products - reactants = 65 KJ - 20 KJ = 145 KJ

7. Is this reaction endothermic or exothermic?

ENDOTHERMIC

Use Figure 2 to answer questions 8-14.

- 8. Which line segment represents the stored P.E. of the reactants?
- 9. Which line segment represents the stored P.E. of the products? <
- 10. Which line segment represents the activation energy, E_a, that is needed for this reaction?
- 11. Which line segment represents the ΔH (change in P.E.) for the reaction?
- 12. Is ΔH positive or negative? Negative
- 13. Which line segment represents the P.E. of the activated complex? 2
- 14. Is this reaction endothermic or exothermic? EXOTHERMIC

Use Figure 3 to answer questions 15-21.

- 15. Is this reaction endothermic / exothermic? ENDOTHERMIC
- 16. Which line segment represents the stored P.E. of the reactants? \triangle
- 17. Which line segment represents the stored P.E. of the products?
- 18. Which line segment represents the activation energy, Ea, that is needed for this reaction?
- 19. Which line segment represents ΔH (the change in P.E.) for the reaction?
- 20. Is ΔH positive or negative? POSITIVE
- 21. Which line segment represents the P.E. of the activated complex?

Writing the Energy Terms in a Chemical Equation

In the equations below, the energy has been written on the reactants side (endothermic) or the products side (exothermic). Write the energy as a ΔH value with the correct sign for the reactions below.

22. 2 KClO_{3 (s)} + 156 kJ
$$\rightarrow$$
 2 KCl (s) + 3 O_{2 (g)} $\Delta H = + 156 \text{ KJ}$

23.
$$CaCO_{3 (s)} + 178.1 \text{ kJ} \rightarrow CaO_{(s)} + CO_{2 (g)}$$
 $\Delta H = + 178.1 \text{ K-J}$

24.
$$NH_4NO_{3 (s)} \rightarrow N_2O_{(g)} + 2 H_2O_{(g)} + 100. kJ$$

In questions 25 & 26, the enthalpy has been written as a ΔH value. Write the correct thermochemical reaction with the enthalpy as a reactant or a product.

25.
$$\Delta H = -185 \text{ kJ}$$

$$H_{2(a)} + Cl_{2(a)}$$

26.
$$\Delta H = +3351 \text{ kJ}$$
 2 Al₂O_{3 (s)} + 3351 KJ 4 Al (s) + 3 O_{2 (g)}

Thermochemical Equations. Solve each problem. Show All Work!

27. Using the equation in #25, how many kJ of heat energy is associated with the formation of 3.33 moles of HCI?

28. Using the equation in #26, how many kJ of heat energy are absorbed when 1.75 moles of Al₂O₃ decomposes?

29. Calculate the kilojoules of heat required to decompose 2.24 mol NaHCO₃ (s). $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g) \triangle H = 129 kJ$

30. How much heat is released when 8.0 g of oxygen react in: $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l) + 1411kJ$.

31. Given the equation Si (s) + 2Cl₂ (g) → SiCl₂ (l) + 687 kJ, how much heat is produced when 106 grams of chlorine reacts?